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A model of student’s dilemma
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Each year perhaps millions of young people face the following dilemma: should I continue my
education or rather start working with already acquired skills. Right decision must take into ac-
count somebody’s own abilities, accessibility to education institutions, competition, and potential
benefits. A multi-agent, evolutionary model of this dilemma predicts a transition between stratified
and homogeneous phases, evolution that diminishes fitness, fewer applicants per seat for decreased
capacity of the university, and presence of poor students at élite universities.

Education system constitutes an important element of
every modern society. The main factor that attract peo-
ple to education institutions is the fact that a knowl-
edgeable individual receives a certain ’pay-off’ that might
translate into a better salary, fame, or self-satisfaction.
But to be educated and harvest potential benefits, an
individual must invest certain amount of time and very
often money. In addition, there is a risk related to this
process. For example, one can fail at the exam or loose
interest in an earlier chosen subject. Moreover, one has to
consider that only a fraction of a society can get access
to education institutions and competition is sometimes
fierce. Thus, before deciding whether to be, e.g., a uni-
versity applicant, one has to take into account the above
factors as well as carefully evaluate his/her own abilities.

Since abilities are difficult to assess and the number
of competitors is difficult to foresee, there is no a simple
recipe on making the right decision. As a result predict-
ing the functioning of an educational system is far from
trivial. One problem, for example, is a possibility that
a strong pressure will push all individuals toward being
university applicants. Such a situation might be quite
frustrating for the society as a whole since a large frac-
tion of them is bound to fail. Perhaps it would be better
if part of a society would give up educational benefits and
abstain from applying. But can we expect that optimal
decisions of individuals will imply a well-being of a soci-
ety? Another problem, is to predict the number of uni-
versity applicants. This number is of much concern not
only to university planners but also to applicants them-
selves. The later ones are more concerned with the ratio
of the number of applicants and the amount of applicants
the university will accept, since it better reflects the ac-
tual competition. How are these numbers changing when
the university e.g., reduces the amount of accepted candi-
dates? Will this ratio, and at the same time competition,
increase? Or, will this imply a better level of university
students? Naively, one can expect that élite universities
that accept only few best applicants should be able to
keep a very high level. However, a large risk of failure
might put off potential high-level applicants opening the
door to lower-level applicants. It seems that modelling
of educational systems so far is restricted to certain spe-

cific topics [1]. Certainly, some insight into more basic
properties of such complex problems would be desirable
that hopefully could improve our educational systems.

In the present paper we introduce a multi-agent evolu-
tionary model that describes some aspects of educational
systems. Such an approach proved to be very success-
ful in studying some other conflicting social situations,
known as the so-called prisoner dilemma [2] providing
thus an elegant game-theory illustration of reciprocal al-
truism [3]. In our model there are N individuals of lev-
els of abilities li, and ’confidence level’ pi, i = 1, . . . , N
(0 < li, pi < 1). An elementary step (a unit of time) of
the dynamics of our model is made of four parts: decision
making, payoff, removal, and reproduction. First, each
individual decides, according to a stochastic rule spec-
ified below, whether to apply or not to the university.
The university accepts applicants provided that their to-
tal number is not greater than M . If so, only M best
(i.e., those with the highest values of li) applicants are
accepted. A successful applicant receives a payoff s, while
the rejected ones the failure payoff f . Those who decided
not to apply receive the give-up payoff g. In our context
it is natural to examine only the case f < g < s. The
received payoff determines fitness of an individual and
thus its survival and reproduction chances. More specif-
ically, K individuals are removed from the population
according to the rule that a randomly chosen individual
i that received a payoff xi(= f, g or s) is removed with

a probability p(xi) = exp(−xi/z) where z = 1

N

∑N

i=1
xi

is the average fitness of the population. Finally, we cre-
ate K new individuals reproducing surviving individuals.
In particular, a selected survived individual produces an
offspring with probability 1 − exp(−xi/z). An offspring
inherits parameters li and pi of his parent subject to a
small mutation of amplitude δ [4].

A decision of i-th individual whether to apply to the
university or not is based on the comparison of his/her
level li with the average level l of successful applicants
of the previous enrollment. The simplest rule might be
for example to apply to the university only when li > l
and not apply otherwise. However, we use another rule
that allows for both choices to be made albeit with some
probability that is specified by the ’confidence level’ pi.
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FIG. 1: Transition line in the (g,m) plane separating homo-
geneous and stratified phases. Upper and lower insets show
the fitness z, and average number of individuals that decided
to apply to the university r, as functions of g.

In particular, an individual applies to the university with
a probability h(li, pi) being a continuous piece-wise linear
increasing function of li and pi defined as

h(li, pi) =

{

pili/l for li < l
[

(1 − pi)li − l + pi

]

/(1 − l) for li ≥ l
(1)

The function h(li, pi) has the property that h(li =
0, pi) = 0, h(li = 1, pi) = 1 and h(li = l, pi) = pi.

To examine the behaviour of our model we made
numerical simulations. Presented results are obtained
for N = 1000 but we also made simulations for N =
500, 2000 and 5000 with qualitatively the same be-
haviour. We used payoff values s = 10, f = 0, the num-
ber of removed individuals K = N/10, and the mutation
amplitude δ = 0.01 (qualitatively the same behaviour
was seen for δ = 0.001). Varying the give-up payoff g
and the normalized capacity of the university m = M/N ,
we monitored certain characteristics of our model such
as the ratio r equal to the number of individuals that
decide to apply to the university divided by N , the aver-
age fitness z, and some probability distributions. Unless
specified otherwise, simulations start with all individuals
having li and pi randomly chosen from the unit inter-
val (0, 1). Stationary averages are calculated only after
relaxing the system for sufficiently long time. Obtained
results are described below [5].

First, numerical simulations show that the popula-
tion with the initial uniform distribution of li and pi

quickly evolves toward much different states. Station-
ary behaviour, (see Fig. 1) depends on parameters g and
m. For sufficiently small g or sufficiently large m the
system remains in the homogeneous phase where all in-
dividuals are clustered around (1,1) point in the (li, pi)
plane. In other words, the population consists of indi-
viduals of a very good level and which most likely will
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FIG. 2: Time dependence of the global fitness z for simula-
tions with the initial state such that (a) 0 < pi < 1 and (b)
0 < pi < 0.1. Simulations were done for m = 0.3 and g = 4
and results are averages of 100 independent runs.

apply to the university (r ≃ 1). Consequently, in this
phase the average fitness remains very close to the value
z = sm + f(1 − m) = 10m (i.e., a value when everyone
is applying), as verified by numerical calculations (upper
inset of Fig. 1).

When the give-up payoff g is sufficiently large or the ca-
pacity of the university m is sufficiently small, struggling
for admission to the university is no longer the best strat-
egy. Indeed, we observe that in such a case the model
evolves differently. Now, only a part of the population
aims at the university education and has li and pi close
to unity. In addition to that there is a part of the popula-
tion that receives smaller but more secure give-up payoff
g. To receive this payoff an individual should not ap-
ply to the university and that is why in this part of the
population li and pi are quite close to zero (let us notice
that according to Eq. (1) the smaller li and pi are, the
smaller probability of applying to the university is). In
this stratified phase the ratio of applicants r is definitely
smaller than unity and the fitness z is larger than in the
homogeneous phase (insets of Fig. 1).

As we already mentioned, the larger the fitness of an in-
dividual the larger its survival and reproduction chances.
One can thus expect that a system will evolve toward
states of maximal fitness. Such an expectation originates
partially from our experience with thermodynamical sys-
tems where dynamics typically drives a system toward a
state that minimizes its free energy. But numerical simu-
lations show that evolutionary systems like our model do
not meet these expectations. In Fig. 2 we show the time
dependence of the fitness z calculated for g = 4, m = 0.3
and N = 1000. For such values of g and m, when the
system starts with li and pi uniformly drawn from the
interval (0,1) it evolves toward the stratified phase (see
Fig. 1). We checked that there is a lot of other initial con-
ditions (i.e., ways to draw initial values of li and pi) that
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FIG. 3: Snapshots of distributions of li and pi for simulations
with the initial state such that 0 < pi < 0.1. Simulations
were done for m and g as in Fig. 2. For t = 1000 the system
is very close to the state with maximal fitness z = 5.8

lead to the same phase. However, some initial conditions
yields a different behaviour. In particular, when pi are
initially drawn from a smaller interval namely, (0,0.1),
the system evolves toward the homogeneous phase with
all li and pi close to unity (Fig. 2, Fig. 3). Qualitative
understanding of such a behaviour is as follows: When
individuals have small values of pi, the number of indi-
viduals that apply to the university is also small, and
in particular smaller than the capacity of the university
M . As a result, nobody gets the failure payoff f and the
population consists only of individuals with payoffs s and
g. Since s > g individuals who apply to the university
gain some evolutional advantage. Of course, under such
conditions individuals with larger pi and li are preferred
since for them probability to apply to the university is
larger, and individuals with small pi and li are depleted.
During such an evolution the fraction of people applying
to the university r increases (that leads to the increase
of the average fitness z (Fig. 2)) and at a certain mo-
ment the population reaches the point where r = m. At
this point the population has the largest possible fitness
zM = sm + g(1 − m) that in our case s = 10, g = 4
and m = 0.3 yields zM = 5.8 [6]. However, the evolution
does not stop here but drives the system towards the ho-
mogeneous phase with much smaller fitness z (Fig. 2).
Let us also notice that even in the stratified phase the
fitness z(∼ 5.0) is lower (although not that much) than
the maximal value zM .

An important characteristic that can be extracted from
our model is an average number of applicants r divided
by the capacity of the university m. This is actually
the number of applicants per seat and it is an obvious
measure of competition for the admission. In Fig. 4 we
present numerical calculation of this quantity.
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FIG. 4: The number of applicants per seat as a function of
the capacity of the university m calculated for several values
of g.

First, one can see that in the homogeneous phase r/m
is well approximated with the function 1/m, which is an
straightforward consequence of the fact that in this phase
probability of applying to the university is very large and
hence r is very close to unity. The behaviour dramati-
cally changes in the stratified phase where the number
of applicants per seat r/m decreases when the capacity
m decreases. Apparently, a decreased capacity makes an
admission less likely and that discourages potential ap-
plicants. Moreover, one can see that a maximum of r/m
that corresponds to the most fierce competition among
candidates occurs most likely at the transition between
stratified and homogeneous phases.

Although the number of applicants per seat decreases,
for g = 3 and 5 it is still definitely larger than unity. As
a result the university has a plenty of candidates to chose
from, and the level of university students l is very close to
unity. An indication of a possibly different behaviour is
seen in Fig. 4 for g = 8 and very small m (where a sharp
drop ofr/m is seen). Indeed, in this case, the average
level l is definitely smaller than unity (inset of Fig. 5).
To explain such a behaviour we looked in more details at
individuals accepted to the university. It turns out that
for small m a non negligible fraction of successful appli-
cants has quite a low level li (Fig. 5). Let us recall that
for such values of g and m the system is in the stratified
phase. Typically, even in the stratified phase success-
ful applicants belong only to that part of the population
where li and pi are very close to unity. However, Fig. 5
shows that for g close to s and small m the other part of
the population (i.e., that with li and pi close to zero) gets
access to the university as well. Although it reduces the
level of applicants l, in a wider social context it might
be a desirable feature that candidates from other (less
educated) group can enter such an élite university.

Finally, let us notice that certain features of our model
bear some similarity to minority games [7]. Indeed, the
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FIG. 5: Probability distributions for accepted individuals to
have the level l calculated for g = 8 and several values of m.
Inset shows the average level l as a function of m for g = 8

payoff of an individual in our model depends on the be-
haviour of other individuals. Moreover, individuals have
a one-step memory and remember the average level l of
successful applicants from the previous enrollment. Al-
though our model seems to be more complicated, we hope
that it might be interesting to examine further similar-
ities with minority games since the later ones were al-
ready subject of intensive research and are much better
understood. For example on can study a version of our
model where individuals have a longer memory and see
how performance of an individual depends on its mem-
ory. Another possible generalization might be to examine
the case of two universities (with e.g., different success
payoffs s) and/or the role of spatial effects. Such effects
are known to play an important role in the evolutionary
versions of prisoner’s dilemma model [8].

Nevertheless, the behaviour of our model seems to be
to some extent generic. Indeed, simulating the model
with probability of applying to the university being inde-
pendent of li and given as h(li, pi) = pi we also observed
e.g., the existence of stratified and homogeneous phases.
However, such a choice of h(li, pi) we consider as less
realistic. Moreover, these phases appear also for all pi

equal to unity (and kept constant). However, some other
effects reported in this paper do not appear in this case.

In summary we introduced an evolutionary, multi-
agent model of an enrollment process, where a population
of individuals of different levels of abilities li and confi-
dence pi have to decide whether to apply or not to the
university. Depending on their decisions (and decisions
of all other individuals) they receive certain payoffs. Such
a payoff determines fitness of a given individual and that
in turn determines its chance of survival and reproduc-
tivity. Numerical simulations show that depending on

parameters (payoff values or capacity of the university)
the system might be in either a homogeneous phase, with
all individuals having li and pi close to unity (i.e., taking
almost maximal values ) or in the stratified phase where a
part of the population has much lower values of li and pi.
Although dynamics of the model favors individuals with a
large fitness under certain conditions the model is driven
toward states where the global fitness of all individuals
is quite low. Even more, on the way to such states it
passes through states of large fitness, that unfortunately
cannot trap it. This result is actually quite worrying and
perhaps not unrealistic. It shows that a society might be
driven toward an undesirable state even though individ-
uals are making no explicit efforts to enter such a state.
Moreover, our simulations show that decreasing the ca-
pacity of the university the number of candidates per seat
increases but only in the homogeneous phase. When this
capacity is too low the model enters a stratified phase and
the number of candidates per seat decreases (apparently
put off by a large risk of failure). In the extreme case
of a very small capacity, competition drops even further
and as a result applicants of a quite poor abilities (from
a different social group) can succeed.
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